

AI DEVELOPMENT WITH PYTHON

MODULE 1 – INTRODUCTION TO PYTHON PROGRAMMING

MODULE 2 – DATA ANALYSIS IN PYTHON USING PANDAS

MODULE 3 – FOUNDATIONS OF NUMERICAL COMPUTING WITH NUMPY

MODULE 4 – DATA VISUALIZATION USING MATPLOTLIB AND SEABORN

MODULE 5 – MACHINE LEARNING IN AI

MODULE 6 – DEEP LEARNING IN AI

MODULE 7 – NATURAL LANGUAGE PROCESSING IN AI

MODULE 1 – INTRODUCTION TO PYTHON PROGRAMMING

- 1. GETTING STARTED WITH PYTHON
 - Overview of Python History, Features and Applications
 - Installing Python and setting up the development environment
- 2. PYTHON BASICS
 - Introduction to Python syntax Variables, Data types and Operators
 - Understanding indentation and code blocks
 - Basic input/output operations using input() and print() functions
 - Comments
- 3. CONTROL FLOW STATEMENTS
 - Conditional statements if, elif and else

- Looping constructs for loops and while loops
- Break and Continue

4. DATA STRUCTURES IN PYTHON

- Lists Creating lists, Indexing, Slicing and List methods
- Tuples Defining tuples, Accessing elements and Tuple operations
- Dictionaries Creating dictionaries, Accessing values and Dictionary methods
- Sets Creating sets, Set operations and Set methods
- 5. OPERATORS
 - Arithmetic operators, Assignment operators, Comparison operators, Logical operators, Membership operators, Identity operators
 - Understanding operator precedence
- 6. FUNCTIONS AND MODULES
 - Defining and calling functions in python
 - Function parameters and return values
 - Writing modular code organizing functions into modules
 - Importing modules and using built-in python modules
- 7. OBJECT-ORIENTED PROGRAMMING (OOP)
 - Introduction to Object-Oriented programming concepts
 - Classes and Objects Defining classes, Creating objects and Accessing attributes and methods
 - Inheritance and Polymorphism
 - Encapsulation Hiding implementation details and restricting access to data and methods
 - Data Abstraction
- 8. JSON (JAVASCRIPT OBJECT NOTATION)
 - Introduction to JSON and its importance in data interchange
 - Parsing JSON data in python using the json module
 - Serializing Python objects to JSON format and vice versa
- 9. FILE HANDLING
 - Reading from and writing to files in python
 - Working with text files Opening, Reading, Writing and Closing files
 - Handling Excel files Reading data from Excel files

10. EXCEPTION HANDLING

• Understanding exceptions and error types in python

• Using try, except and finally blocks for error handling 11. PACKAGES

- Overview of python packages
- Installing and managing packages using **pip**
- 12. SCOPE
 - Understanding variable scope in python Local and Global scopes
- 13. REGULAR EXPRESSIONS (regex)
 - Introduction to regular expressions and their importance in text processing
 - Syntax and patterns in regular expressions
 - Using the re module in python for pattern matching, searching and substitution

MODULE 2 – DATA ANALYSIS IN PYTHON USING PANDAS

1. INTRODUCTION TO PANDAS

- Overview of Pandas library
- Installing Pandas
- Pandas data structures Series and Dataframes
- Advantages of using Pandas for data analysis
- 2. EXPLORING DATA WITH PANDAS
 - Loading and Inspecting data reading from CSV
 - Previewing data head, tail, sample
 - Basic information about data shape, size, datatypes
 - Descriptive statistics mean, median, mode, variance etc
- 3. DATA MANIPULATION WITH PANDAS
 - Selecting and indexing data loc, iloc, Boolean indexing
 - Handling missing data Identifying missing values, filling, dropping
 - Data transformation Applying functions, mapping, replacing values
 - Combining datasets Concatenation, Merging, Joining
- 4. DATA AGGREGATION AND GROUPING
 - Grouping data Split-apply-combine strategy

- Aggregating data Sum, Mean, Median, Count
- Grouping by multiple variables
- Applying custom aggregation function

5. DATA CLEANING AND PREPARATION

- Handling duplicate data
- String manipulation Splitting, Concatenating, Extracting substrings
- Data normalization and scaling
- Handling categorical data

MODULE 3 – FOUNDATIONS OF NUMERICAL COMPUTING WITH NUMPY

1. INTRODUCTION TO NUMPY

- What is NumPy?
- Why use NumPy for numerical computing?
- Installing NumPy

2. NUMPY ARRAYS

- Understanding NumPy arrays creation, attributes and properties
- Array indexing and slicing
- Array manipulation reshaping, concatenation, splitting
- Handling different dimensions in NumPy arrays 0-D, 1-D, 2-D, 3-D
- 3. NUMPY OPERATIONS
 - Basic arithmetic operations with arrays
 - Universal functions (ufuncs) in NumPy
- 4. AGGREGATION AND STATISTICAL OPERATIONS
 - Computing aggregates Sum, Mean, Median, Min, Max etc
 - Statistical operations Variance, Standard deviation etc
 - Random number generation with NumPy

5. LINEAR ALGEBRA WITH NUMPY

- Matrix operations Addition, Subtraction, Multiplication
- Matrix decomposition LU decomposition, QR decomposition
- Solving linear equations using NumPy

6. NUMPY AND DATASCIENCE

- Using NumPy with Pandas for data manipulation and analysis
- Applying NumPy in data preprocessing tasks
- Handling missing data and outliers with NumPy

MODULE 4 – DATA VISUALIZATION USING MATPLOTLIB AND SEABORN

- 1. INTRODUCTION TO DATA VISUALIZATION
 - Importance of data visualization in data analysis and communication
 - Overview of Matplotlib and Seaborn libraries for data visualization in python
- 2. GETTING STARTED WITH MATPLOTLIB
 - Basic plotting Line plots, Scatter plots, Bar plots, Histogram
 - Customizing plots Colors, Markers, Labels, Titles, Axes, Legends
 - Saving plot to files
- 3. INTRODUCTION TO SEABORN
 - Overview of seaborn library and its advantages over Matplotlib
 - Understanding seaborn aesthetics and themes
- 4. STATISTICAL PLOTS WITH SEABORN
 - Visualizing distributions Histograms, Kernel density estimation (KDE) plots
 - Box plots, Violin plots and Swarm plots for categorical data
- 5. REGRESSION PLOTS AND CORRELATION
 - Visualizing linear relationship scatter plots with regression lines
 - Pairwise relationships correlation heatmaps and clustermaps

MODULE 5 – MACHINE LEARNING IN AI

- 1. INTRODUCTION TO MACHINE LEARNING
 - Understanding the fundamentals of machine learning

- Differentiating between Supervised, Unsupervised and Reinforcement learning
- Real-world applications of machine learning
- 2. SUPERVISED LEARNING
 - Regression Models
 - Simple linear regression
 - Multiple linear regression
 - Polynomial linear regression
 - Classification Models
 - Logistic regression
 - Naive bayes
 - KNN classifier
 - Decision tree
- 3. UNSUPERVISED LEARNING
 - Overview of unsupervised learning algorithms
 - Clustering algorithms
 - o K-means
 - Hierarchical clustering
 - o DBSCAN
- 4. REINFORCEMENT LEARNING
 - Basics of reinforcement learning
 - Reinforcement learning algorithms
 - Q-learning
 - Deep Q Networks
- 5. INTEGRATION WITH TENSORFLOW AND KERAS
 - Introduction to TensorFlow and Keras for deep learning.
 - Building neural networks using TensorFlow and Keras.
 - Training and evaluating deep learning models for classification and regression tasks.
- 6. INTEGRATION WITH OPENCV FOR IMAGE PROCESSING
 - Introduction to OpenCV library for image processing.
 - Reading and displaying images, basic image manipulations.
 - Feature extraction, object detection, and tracking with OpenCV.

MODULE 6 – DEEP LEARNING IN AI

1. INTRODUCTION TO DEEP LEARNING

- Understanding the basics of neural networks
- History and evolution of deep learning
- Real world applications of deep learning
- 2. ARTIFICIAL NEURAL NETWORKS (ANNs)
 - Architecture of ANNs Input layer, Hidden layer, Output layer
 - Activation functions Sigmoid, ReLU, Softmax, Identity
- 3. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
 - Architecture of CNNs Convolutional layers, Pooling layers, Fully connected layers
 - CNN building blocks Filters, Strides, Padding
 - Applications of CNNs in image recognition, object detection and segmentation
- 4. RECURRENT NEURAL NETWORKS (RNNs)
 - Architecture of RNNs Recurrent layers, LSTM cells, GRU cells
 - Handling sequential data with RNNs Time series prediction, Natural language processing
 - Applications of RNNs in text generation, sentiment analysis and language translation
- 5. K-NEAREST NEIGHBORS (KNN)
 - Introduction to the K-Nearest Neighbors algorithm.
 - Implementation workflow and parameters.
 - Use cases and applications of KNN in classification and regression tasks.

MODULE 7 – NATURAL LANGUAGE PROCESSING IN AI

- 1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING (NLP) AND AI
 - Basics of natural language processing and its importance in AI

- Overview of NLP tasks Text classification, Sentiment analysis, Machine translation
- 2. TEXT REPRESENTATION AND EMBEDDINGS
 - Bag-of-words model and TF-IDF representation
 - Word embeddings Word2Vec, GloVe, fastText
 - Document embeddings Doc2Vec, Sentence embeddings
- 3. TEXT CLASSIFICATION
 - Overview of text classification tasks and algorithms
 - Supervised learning approaches Logistic regression, Naive Bayes
 - Deep learning models for text classification CNNs, RNNs
- 4. LANGUAGE MODELLING AND GENERATION
 - Language modelling with n-grams and RNNs
 - Text generation techniques Markov chains, Recurrent neural networks
- 5. MACHINE TRANSLATION
 - Basics of machine translation and its challenges
 - Statistical machine translation Vs neural machine translation
 - Sequence-to-sequence models and attention mechanisms